Understanding Precision Medicine

Genes are DNA sequences that carry hereditary information. This information defines the traits of a cell and is necessary to maintain normal cell functions. Humans have approximately 20,000 genes.

A gene mutation is a permanent change in the sequence of chemical bases in a cell’s DNA. Mutations occur frequently in the human body. Some mutations are not harmful, but other mutations may cause the proteins encoded by the gene to function incorrectly or not at all. This, in turn, prevents the cell from working properly and can cause diseases such as cancer.

Among the 20,000 human genes, about 300-400 are related to cancer. If a mutation occurs in one of those genes, this may cause an uncontrolled growth of the affected cell by a dysregulation of the cell growth signaling pathway in which the mutated gene plays a role. Since patients have their own individual mutation patterns affecting different genes and pathways, targeted therapy only works for patients in which the targeted pathways are altered.

Precision medicine analyzes mutations in cancer-related genes to find out what drives your cancer, enabling the identification of targeted therapies that directly interfere with tumor growth. Because gene mutations are different for individual patients, you are more likely to benefit from therapies that are tailored for your cancer.

The mutations in cancer-related genes are identified by an analysis of tumor samples using a high-throughput method called next-generation sequencing (NGS). This method allows a rapid and comprehensive gene analysis. Through bioinformatics data processing and utilizing clinical databases, gene mutations are matched with the appropriate targeted therapies to provide patients and doctors with personalized treatment options.

© 2019 Todsyshealth. All rights reserved.